Name:_____

Section 17.1 and 17.2 Review

Section 17.1 Additional Exercises

1. Sketch the following planar vector fields by drawing the vectors attached to points with integer coordinates in the rectangle $-3 \le x \le 3$, $-3 \le y \le 3$. Instead of drawing the vectors with their true lengths, scale them if necessary to avoid overlap.

a) $\mathbf{F} = \langle 0, x \rangle$

b) $\mathbf{F} = x^2 \mathbf{i} + y \mathbf{j}$

2. Calculate $\operatorname{div}(\mathbf{F})$ and $\operatorname{curl}(\mathbf{F})$.

a)
$$\langle xy, yz, y^2 - x^3 \rangle$$

- b) $\sin(x+z)\mathbf{i} ye^{xz}\mathbf{k}$
- 3. Find by inspection a potential function for $\mathbf{F} = \langle x, 0 \rangle$ and prove that $\mathbf{G} = \langle y, 0 \rangle$ is not conservative.

4. Find a potential function for the vector field **F** by inspection or show that one does not exist. a) $\mathbf{F} = \langle x, y \rangle$

b) $\mathbf{F} = \langle yz^2, xz^2, 2xyz \rangle$

c) $\mathbf{F} = \langle yz \cos(xyz), xz \cos(xyz), xy \cos(xyz) \rangle$

Section 17.2 Additional Exercises

1. Compute

$$\int_C f \ ds$$

for the specified curves.

- (a) The piecewise linear path from (0, 0, 1) to (0, 2, 0) to (1, 1, 1) for $f(x, y, z) = xe^{z^2}$.
- (b) $f(x,y) = \sqrt{1+9xy}$ and the curve $y = x^3$ for $0 \le x \le 1$

2. Compute

$$\int_C \boldsymbol{F} \cdot d\boldsymbol{r}$$

for the oriented curve specified.

- (a) $F(x,y) = \langle x^2, xy \rangle$, for the line segment from (0,0) to (2,2)
- (b) $F(x,y) = \langle x^2, xy \rangle$, for part of the circle $x^2 + y^2 = 9$ with $x \le 0, y \ge 0$, oriented clockwise.

3. Evaluate the line integral

$$\int_C y dx - x dy,$$

parabola $y = x^2$ for $0 \le x \le 2$.